A novel approach to error function minimization for feedforward neural networks
نویسندگان
چکیده
منابع مشابه
A Penalty-Function Approach for Pruning Feedforward Neural Networks
This article proposes the use of a penalty function for pruning feedforward neural network by weight elimination. The penalty function proposed consists of two terms. The first term is to discourage the use of unnecessary connections, and the second term is to prevent the weights of the connections from taking excessively large values. Simple criteria for eliminating weights from the network ar...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولOptimization-based learning with bounded error for feedforward neural networks
An optimization-based learning algorithm for feedforward neural networks is presented, in which the network weights are determined by minimizing a sliding-window cost. The algorithm is particularly well suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results con...
متن کاملOptimized Learning with Bounded Error for Feedforward Neural Networks
A learning algorithm for feedforward neural networks is presented that is based on a parameter estimation approach. The algorithm is particularly well-suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results confirm the effectiveness of the algorithm and its adva...
متن کاملAn evolutionary approach to training feedforward and recurrent neural networks
This paper describes a method of utilising genetic algorithms to train fixed architecture feed-forward and recurrent neural networks. The technique described uses the genetic algorithm to evolve changes to the weights and biases of the network rather than the weights and biases themselves. Results achieved by this technique indicate that for many problems it compares very favourably with the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
سال: 1995
ISSN: 0168-9002
DOI: 10.1016/0168-9002(95)00247-2